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Outline

• Disruptions with VDE displacement ξ

– relation of perturbed toroidal current Ĩφ and vertical current moment M̃IZ

– numerical simulations

• Sideways wall force and current asymmetry relation

– sideways force Fx ∝ M̃IZ

– comparison of M̃IZ, δB, and ξ

• Rotation

– fit of numerical data and analytic scaling with ξ,δB and βN

– comparison of force rotation and net toroidal velocity

• JET

– Is JET a good predictor for ITER?

– modes in multiple disruptions

2



Toroidal variation of toroidal current in JET

(a) (b) (c)

(a) layout of JET Iφ measurements. (b) Current Iφ measured in quadrants of JET,
showing n = 1 toroidal variation. (c) Toroidal current variation vs. the vertical mo-
ment of the current variations in asymmetric vertical displacement events (AVDE)
[Gerasimov et al. N.F. 2014].

It was shown analytically and computationally [Strauss et al. , Phys. Plasmas 21,
102509 (2014)] that the slope in (c) is Phys. Plasmas 21, 102509 (2014)].

Ĩ ∝ ξM̃IZ

where ξ is the vertical displacement.
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M3D simulations of current asymmetry and vertical current moment

ITER FEAT15MA equilibrium
was modified by setting toroidal
current and pressure to zero
outside the q = 2 surface,
keeping the total toroidal cur-
rent constant ( MGI model)
[Izzo et al. 2008]. Plasma was
evolved with M3D in 2D to an
initial VDE displacement, then
evolved in 3D.
τwall = 104τA. Velocity bound-
ary condition vn = 0.

(a) (b)

An additional set of states was made by setting current and pressure equal to zero
outside the q = 1.5 surface. These states were unstable to downward VDEs. M3D
simulations were done with S = 106, wall penetration time τwall = 104τA. Velocity
boundary condition vn = 0. Plasma is turbulent, not an equilibrium with surface
current.

Upward VDE: (a) ψ (b) Jφ with ξ = 0.72a, time t = 146τA, toroidal angle φ = 0.
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Time averaged Ĩφ/M̃IZ and time histories Ĩφ, M̃IZ

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

∆I
/∆

M
IZ,∆

I,∆
M

IZ

ξ

∆I/∆MIZ,∆I,∆MIZ

5x∆I
5x∆MIZ
∆I/∆MIZ

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08
∆I

∆MIZ

∆I vs. ∆MIZ

(a) Time averages of Ĩφ, M̃IZ. Showing Ĩφ/M̃IZ ∝ ξ, for |ξ|
<
∼ 1, when plasma

current channel reaches the wall. (b) Time histories of Ĩφ, M̃IZ for the cases in (a).
This is similar to JET data.
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Noll relation of sideways force Fx ∝ M̃IZ

Measurements of these simulations were also made of asymmetric wall force Fx(ξ),
and net toroidal velocity Vφ(ξ). These were compared with theory.

A Noll like relation [Noll et al., 1996] for the
sideways force Fx

Fx =
πB

q
M̃IZ (1)

is obtained from the data, with q = 1.3.
The force Fx and M̃IZ are approximately
linear in VDE displacement ξ. Note Fx ≈ 0
for ξ = 0.
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Heuristic Noll relation of sideways force Fx ∝MIZ

Noll relation [Noll et al., 1996] for the sideways
force Fx in terms of MIZ

IZ = Iφξ cosφ

FR = IZBφ

Fx =

∮

FR cosφdφ

MIZ = ξIφ

Fx = πBMIZ

MIZ is more easily measured than Fx, used in
analysis of JET data [Gerasimov et al. 2014].
Note π/2 shift in φ between maximum Fx and
maximum vertical displacement ξ.
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Theory of Noll relation Fx ∝ M̃IZ

The total wall force is given by

F =
δwall

2πL

∫

dldφJwall ×Bwall (2)

and

Jwall ×Bwall ≈ r̂J̃wallφ Bwall
θ .

where δwall is the wall thickness, τwall = δwallr/(mηwall). For long wall penetration
time, γτwall >> 1, the vacuum field does not contribute to the perturbed current,

J̃wallφ =
B̃θ

δwall

The net horizontal force Fx is

Fx =
Bwall
θ

4π2

∮

B̃θ cos θ cosφdθdφ (3)

Expressing B̃θ in terms of MIZ, gives (1).

M̃IZ =

∫

Jφ sin θr
2drdθ = r2

∮

B̃θ sin θdθ (4)
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Relation of B̃θ to M̃IZ

In a circular cross section with large as-
pect ratio, let

B̃θ = B11 sin(θ+φ)+B21 cos(2θ+φ).

Displacing

B21(r − ξ sin θ) ≈ B21 −B′
21ξ sin θ

by a VDE, then

M̃IZ = πa2(2B11 − ξB′
21) (5)

Let V = πa2 and

δB = (a/ξV )M̃IZ ≈ (1/2)|B21|.

Magnetic perturbations were also cal-
culated directly from

δB21 =
1

abL

∮

(R−R0)ZB̃ldl
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Simulations show that M̃IZ ≈ 0 for ξ = 0, which implies B11 ≈ 0, because it is an
internal mode. The plot compares δB, δB21, and M̃IZ which agree for ξ/a not too
large.

For nonzero ξ, B11 can be nonzero. δB will be used in the following.
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Dependence of toroidal velocity on vertical displacement

In [Strauss et al. 2014] the toroidal rotation caused by disruptions was calculated.
This was motivated by a concern that if the asymmetric wall force Fx varies with a
frequency ∼ 100 Hz, there could be a resonance with ITER structures.
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Scaling of toroidal velocity with ξ and βN

Two sets of cases were compared to get the scaling with βN .
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These cases compare equilibria with βN = 2.7 and βN = 0.27. In the low βN case,
A2 ≈ 0. The fit is very good for ξ/r < 0.6. There is only low βN data for ξ > 0. The
βN = 2.7 and δB data is the same as on the previous slide, for ξ > 0.
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Theory: Conservation of toroidal angular momentum

∂

∂t
Lφ =

∮

BφBnR
2dldφ (7)

assuming vn = 0 or vφ = 0 at the boundary, where the total toroidal angular mo-
mentum is

Lφ =

∫

ρR2vφdRdZdφ (8)

For simplicity assume circular equilibrium cross sections, dl = rdθ. To obtain a
tractable equation for G, assume radial force balance,

B2
φ +B2

θ +2p ≈ 0 (9)

and large aspect ratio so that R ≈ R0 = constant. Then L̇φ can be split into two

parts, L̇φ = L̇φB + L̇φp where

L̇φB = −
Rr

2Bφ0

∮

BrB
2
θ1dθdφ (10)

L̇φp = −
Rr

Bφ0

∮

Brpdθdφ (11)
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The plasma and poloidal flux ψ are displaced by a VDE with ξ sin θ, ψ0 = ψ0(r −
ξ sin θ). Hence with Br = (1/r)∂ψ/∂θ, Bθ = −∂ψ/∂r, Br = (ξ/r) cos θBθ. There
must be at least two modes (m,n), (m + 1, n) contributing to Bθ1 which beat to-
gether to give a cos θ term. Expanding Bθ1 =

∑

mnBθmn cos(mθ − nφ) then (10)
becomes

L̇φB =
π2ξrR

2q

∑

mn

BθmnBθ(m+1)n (12)

To compare with the scaling (6), let v̇φ = γvφ, in (7). Then (12) yields

A1 =
1

4γτAq
(13)

and taking q = 2.7, γτA = 0.014 gives agreement with A1 = 7.5 in (6). The
calculation of (11), is given in [Strauss et al. 2014].

The ratio is L̇φp/L̇φB = A2βN(ξ/r)
2, with

A2 =
q[1 + m(m + 1)]

2(m − q)(m + 1 − q)
(lnβN)′(ln δB)′r2 (14)

Taking m = 1, βN = 2.7, (ln δB)′r = (lnβN)
′ = −1, gives A2 = 3 in agreement

with (6).
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Comparison of average Vφ and rotation of sideways force

The frequency of oscillation of the sideways force is higher than the frequency of
rotation calculated from the volume averaged toroidal velocity, because of its zonal
structure. The force angle is α = tan−1(Fy/Fx). The half period τα/2 from between
minimum and maximum α was measured. The oscillation of the force is about 3− 4
times faster than calculated from the net rotation Vφ, as in [Strauss et al. 2014].
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(c)

(a) vφ in a disruption, showing zonal structure (b)Force angle α as a function of time,
for several values of ξ. (c) Frequency calculated from α and from average toroidal
velocity vφ. The force oscillation frequency is ∼ 1kHz, not a problem for ITER.
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Are JET disruptions predictive for ITER?

JET has short wall time: τw−JET = 3ms, τw−ITER = 300ms.

JET and ITER τA are comparable, τA ≈ 1µs.

For MHD instabilities, γτw = O(1) in JET, γτw = O(100) in ITER

Hence the scaled sideways force is much larger in JET.

JET toroidal rotation in disruptions = 100Hz, NSTX and C-Mod, 1kHz.

Radiation from a JET disruption, which looks like an
m,n = 1,1 island, suggesting q ≈ 1. From Plyusnin et

al. , IAEA 2004.

JET disruptions have qLCFS ≈ 1 − 1.5, while ”most” dis-
ruptions occur when qLCFS ≈ 2.

how is a state with qLCFS ≈ 1− 1.5 produced?
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Multiple TQ’s when toroidal current is sustained

(a) pressure p at t =
343τA during 1st TQ.
(b) pressure p at t =
686τA during 2nd TQ.
(c) iso plot of p at t =
686τA showing n = 2
structure.

(a) (b) (c)
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(d)
(d) time history of Iφ, p, Fx, Vφ.

The first disruption has large (m,n) =
(1,1) perturbations, although qLCFS ≈ 2.
If the current is sustained by loop volt-
age, there can be a second TQ. Appar-
ently the second disruption is produced by
an (m,n) = (3,2) mode. This sug-
gests that magnetic flux is scraped off so
that qLCFS ≈ 1.5. (2,1) and (3,2)
modes could interact nonlinearly to pro-
duce a large (1,1) force perturbation.
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Conclusions

• Relation of Ĩ to M̃IZ .

– Ĩ ∝ ξM̃IZ where ξ is VDE displacement

• Noll relation Fx ∝ M̃IZ

– Fx and M̃IZ approximately ∝ ξ

– estimate δB from M̃IZ

• Scaling of Vφ with ξ, δB, βN .

– Force oscillations are not a problem for ITER

• JET disruptions seem to have qLCFS = 1 or 1.5

– might be explained by current sustainment, long enought for flux scrape off
and multiple disruptions
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